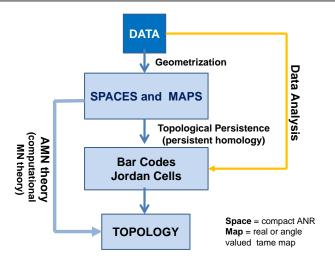
Data Analysis, Persistent homology and Computational Morse-Novikov theory

Dan Burghelea

Department of mathematics Ohio State University, Columbuus, OH

Bowling Green , November 2013



CONTENTS

- Data and Geometrization
- Topological Persistence (barcode and Jordan cells)
- A computer friendly alternative to Morse–Novikov theory (AMN)
- More mathematics

Data Analysis

- What is Data
- How the Data is obtained
- What do we want from Data
- What do we do

1. Mathematically data is given as:

a finite metric space (X, d)

and possibly a map

a map $f: X \to \mathbb{R}$ or $f: X \to \mathbb{S}^1$

- 2. Data are obtained:
- a. By sampling (a shape in three or hiherdimensional eucliden space or a probability distribution)
- b. By scanning a 2 dimensional picture
- c. As a collection of two dimensional pictures (black-white) of a three dimensional environment taken by camera from different angles; each 2D picture regarded as a vector in the pixel space with a gray scale coordinate for each pixel.
- d. As a list of measurements of parameters of a collection of objects/individuals; for example observations on the patients (in a hospital)

- 3. One wants:
- i. In case of sampled geometrical objects:

to **derive geometric** and **topological features** without reconstructing the object entirely or **reconstruct a continuos shape** from a sampling.

ii. In case of an a priory unstructured observations:

to discover patterns and unexpected features, detect missing blocks of data, clusterings

4. One geometrizes the data:

one converts data into topological spaces / spaces and (real or angle valued)maps .

How can topology help?

TOPOLOGY provides:

1. Methods to convert a finite metric space into "nice topological space" = simplicial complex or simplicial complexs and simplicial real or angle valued maps or simplicial complex with a filtration.

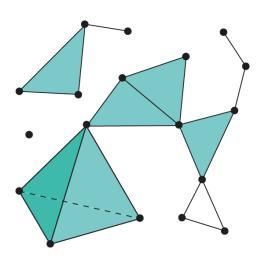
and uses

2. Homology, Betti numbers, EP characteristic (which describes all sorts of connectivity) to make mathematically precise qualitative features of the shape and then to calculate them.

SIMPLICIAL COMPLEXES

- A **solid** k— **simplex** is the convex hull of (k + 1) linearly independent points .
- A geometric simplicial complex K is a "nice subspace of an Euclidean space" precisely a union of solid simplicies which intersect each other in faces (subsimplexes).
- An abstract similcial complex is a pair (V, Σ) with: V a finite set, Σ a family of nonempty subsets of V, so that $\sigma \subseteq \tau \in \Sigma \Rightarrow \sigma \in \Sigma$.

- An abstract simplicial complex determines a geometric simplicial complex and vice versa.
- A simplicial complex is determined by its incidence matrix which can be fed in as input of an algorithm.



Geometrization of Data

To a finite metric space (X, d) and $\epsilon > 0$ one associates:

- **①** The abstract **CECH COMPLEX,** $C_{\epsilon}(X, d) := (\mathcal{X}, \Sigma_{\epsilon})$
 - $\mathcal{X} = X$
 - $S_k := \{(x_1, x_2, \cdots x_{k+1}) | \text{ iff } B(x_1; \epsilon) \cap \cdots B(x_{k+1}; \epsilon) \neq \emptyset\}$
- ② The abstract VIETORIS- RIPS COMPLEX, $\mathcal{R}_{\epsilon}(X, d) := (\mathcal{X}, \Sigma_{\epsilon}).$
 - \bullet $\mathcal{X} = X$,
 - $S_k := \{(x_1, x_2, \cdots x_{k+1}) | \text{ iff } d(x_i, x_j) < \epsilon\}.$

• If
$$\epsilon < \epsilon' \left[\mathcal{C}_{\epsilon}(X, d) \subseteq \mathcal{C}_{\epsilon'}(X, d) \right], \left[\mathcal{R}_{\epsilon}(X, d) \subseteq \mathcal{R}_{\epsilon'}(X, d) \right]$$

• The topology of $C_{\epsilon}(X, d)$ can be very different from $\mathcal{R}_{\epsilon}(X, d)$, however one has:

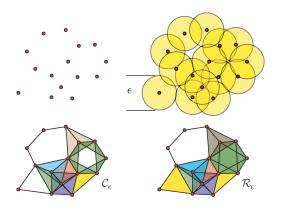
$$\boxed{\mathcal{R}_{\epsilon}(X,d)\subseteq\mathcal{C}_{\epsilon}(X,d)\subseteq\mathcal{R}_{2\epsilon}(X,d)\subseteq\mathcal{C}_{2\epsilon}(X,d)}$$

- A map $f: X \to \mathbb{R}$ provides the simplicial maps $f: \mathcal{C}_{\epsilon}(X, d) \to \mathbb{R}$ and $f: \mathcal{R}_{\epsilon}(X, d) \to \mathbb{R}$
- If $\epsilon < \pi$ a map $f: X \to \mathbb{R}$ provides the simplicial maps $f: \mathcal{C}_{\epsilon}(X, d) \to \mathbb{S}^1$.

If the data is a sample of a compact manifold embedded in the Euclidean space then:

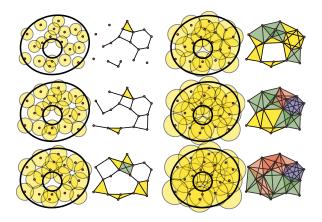
Theorem

There exists $\alpha > 0$ so that for any $\epsilon-$ dense sample (X, d), $\epsilon < \alpha$, the Cech complex $\mathcal{C}_{\epsilon}(X, d)$ is homotopy equivalent to the manifold.



A fixed set of points can be completed to a Cech complex C_{ε} or to a Rips complex R_{ε} based on a proximity parameter ε . This Cech complex has the homotopy type of the $\varepsilon/2$ cover (S1 v S1), while the Rips complex has a different homotopy type (S1 v S2).

• The topology of the ϵ complexes differ, for different ϵ 's . It is therefore desirable to consider all these complexes.



One obtains:

- A simplicial complex,
- ② A simplicial complex and a simplicial map $f: X \to \mathbb{R}$ whose sub levels $f^{-1}(-\infty, t]$ change the homology for finitely many real values $t_0 < t_1, t_2, \cdots t_N$,
- **③** A simplicial complex and a simplicial map $f: X \to \mathbb{R}$ or $f: X \to \mathbb{S}^1$ whose levels $f^{-1}(t)$ change the homology for finitely many (real or angle values) $t_0 < t_2 < \cdots t_N \in \mathbb{R}$.
- A simplicial complex X with a filtration X₀ ⊂ X₁ ⊂ ··· X_{N-1} ⊂ X_N = X; it can be interpreted as item 2 via the telescope construction.

Inspired from Morse theory/ Morse–Novikov theory:

- to $f: X \to \mathbb{R}$ based on changes in homology of sub levels $f^{-1}(-\infty, a]$ one associates a collection of *sub level bar codes* = intervals $[a, b], [a, \infty)$
- to $f: X \to \mathbb{R}$ or to $f: X \to \mathbb{S}^1$ based on changes in the homology of the levels $f^{-1}(t)$ one associates a collection for types of *bar codes* = intervals [a, b], (a, b), [a, b), (a, b] and *Jordan cells* $\{(\lambda, k) \mid \lambda \in \mathbb{C} \setminus 0, k \in \mathbb{Z}_{>1}\}$

Topological persistence

For: $f: X \to \mathbb{R}$,

- X compact ANR,
- f a continuous tame map,
- a < b, and $X_a := f^{-1}(a)$; $X_{[a,b]} := f^{-1}([a,b])$

consider

$$H_r(X_a) \xrightarrow{i_a} H_r(X_{[a.b]}) \stackrel{i_b}{\longleftarrow} H_r(X_b)$$

The collection of these linear relations is reffered to as

(extended) persistent homology.

Birth, Death, Observability

One says that:

- $x \in H_r(X_a)$ will be dead at b, b > a, if $i_a(x) = 0$
- $y \in H_r(X_b)$ was born after a, a < b, if $i_b(y) = 0$
- $x \in H_r(X_a)$ is right-observable at b, $b \ge a$ if there exists $y \in H_r(X_b)$ so that if $i_a(x) = i_b(y)$
- $y \in H_r(X_b)$ is left-observable at a, $a \le b$ if there exists $x \in H_r(X_a)$ so that if $i_b(y) = i_b(y)$

BarCodes and Jordan cells

These concepts lead for any *r* to four types of intervals called *bar codes*.

- r- closed bar code [a, b],
- r- open bar code (a, b),
- r- closed-open [a, b),
- r- open-closed (a, b].

The numbers a, b are critical values of f, i.e. values t where the homology of the fibers $X_t = f^{-1}(t)$ changes.

In case of $f: X \to \mathbb{S}^1$ to an isomorphism (the regular part of the linear relation

$$H_r(X_t) \xrightarrow{i_t} H_r(X_{[t,t+2\pi]}) \stackrel{i_{t+2\pi}}{\leftarrow} H_r(X_{t+2\pi})$$

leads for any r to

• *r*–Jordan cells $\{(\lambda, k) \mid \lambda \in \mathbb{C} \setminus 0, k \in \mathbb{Z}_{\geq 1}\}$

Existence of a closed / open, r-bar code with ends a and b means: for t between a and b there exists $x \in H_r(X_t)$ which is:

- observable at b but not at b', b' > b and at a but not at a'', a'' < a,
- dead at b but not at b', t < b' < b and born after a but not after a'', a < a'' < t,

Existence of closed-open / open-closed r-bar code with ends a and b means that for t between a and b there exists $x \in H_r(X_t)$ which is:

- observable at a but not at a'', a'' < a, and dead at b but not at b', t < b' < b,
- observable at b but not at b', b' > b and born after a but not after a', a < a' < t.

The multiplicity of such bar code is the number of linearly independent elements *x* which satisfy the properties above.

- One denotes by $\mathcal{B}_r^c(f)$, $\mathcal{B}_r^o(f)$, $\mathcal{B}_r^{c,o}(f)$ and $\mathcal{B}_r^{o,c}(f)$ the set of closed, open, closed-open, and open-closed r-bar codes of f.
- One collects the sets $\mathcal{B}_r^c(f)$ and \mathcal{B}_r^o (f) as the finite configuration of points $C_r(f)$ in \mathbb{C} .
- One collects the sets $\mathcal{B}_r^{c,o}(f)$ and $\mathcal{B}_r^{o,c}(f)$ as the finite configuration of points $c_r(f)$ in $\mathbb{C} \setminus \Delta$

$$\Delta := \{z \in \mathbb{C} \mid \Re z = \Im z\}$$





The bar code with ends a, b, $a \le b$ and closed at a is represented as a point a+ib while the bar code with ends a, b, a < b open at a is represented as a point b+ia.

Descripion of the configuration $C_r(f)$

Consider the function $H^f: \mathbb{R}^2 \to \mathbb{Z}_{\geq 0}$ defined by

$$H^f(a,b) := \dim \operatorname{img} egin{cases} H_r(f^{-1}(-\infty,a])
ightarrow H_r(X)) \cap & \ \operatorname{img}(\operatorname{H_r}(f^{-1}([b,\infty))
ightarrow \operatorname{H_r}(X)) \end{cases}$$

For any square $B = [a_1, a_2] \times [b_1, b_2], \ a_1 < a_2, b_1 < b_2$, define

$$I(B) = H(a_1, b_2) + H(a_2, b_1) - H(a_1, b_1) - H(a_2, b_2)$$

and for any z = a + ib the integer valued function

$$\mu^f(a,b) = \lim_{(a,b)\in int B} I(B)$$
.

Theorem

$$C_f(f) = \mu^f$$
.

Replacing the function H^f above by the function

$$h^f(a,b) := \begin{cases} \dim \operatorname{img}(H_r(f^{-1}(-\infty,a]) \to H_r(f^{-1}(-\infty,b]) & \text{if } a < b \\ \dim \operatorname{img}(H_r(f^{-1}[a,\infty)]) \to H_r(f^{-1}[b,\infty)) & \text{if } a > b \end{cases}$$

one derives for f tame, $c_r(f)$.

Alternative to Morse (Morse-Novikov) theory

Relates the bar codes (bar codes and Jordan cells) of f to the topology of X ($X, \xi_f \in H^1(X; \mathbb{Z})$).

For $f: X \to \mathbb{R}$ a tame map one has.

Theorem

If $f: X \to \mathbb{R}$ is tame map then $\sharp \mathcal{B}^c_r(f) + \sharp \mathcal{B}^o_{r-1}(f)$ is a homotopy invariant of X, more precisely is equal to the Betti number $\beta_r(X)$

Theorem $\overline{(Stability)}$

The assignment $C(X,\mathbb{S}^1) \ni f \rightsquigarrow C_r(f) \in S^n(\mathbb{C}), n = \beta_r(X)$, is continuous.

Theorem (Poincaré duality)

If M^n is a closed κ -orientable^a topological manifold with $f: M \to \mathbb{R}$ a tame map then $C_r(f)(z) = C_{n-r}(-f)(i\overline{z})$

 a If κ has characteristic 2 any manifold is κ -orientable if not the manifold should be orientable.

Similar but more subtle results hold for angle valued maps

EXAMPLE

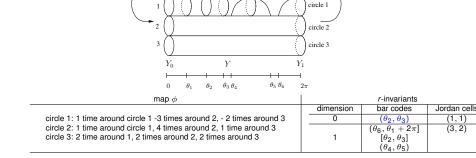


Figure: Example of *r*-invariants for a circle valued map

Note : - If one add a cord from the θ_2 =level to θ_3 – level one introduces a 0-open bar code (θ_2, θ_3) .

CREDITS.

- 1 H.Edelsbrunner, D. Letscher, A. Zamorodian, introduced sublevel persoistence
- 2. G. Carlsson V. de Silva, D. Morozov, introduced ZigZag persistence
- 3. D. Burghelea, T.Dey, introduced persistence for angle valued maps
- 4. D.Cohen-Steiner, H.Edelsbrunner, J.Harer First result on stability for sub level barcodes.
- 5. D. Burghelea, S.Haller . Stability fot the configurations $C_r(f)$