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Data Analysis

1 What is Data

2 How the Data is obtained

3 What do we want from Data

4 What do we do
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1. Mathematically data is given as:

a finite metric space (X ,d)

and possibly a map

a map f : X → R or f : X → S1
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2. Data are obtained :

a. By sampling (a shape in three or hiherdimensional
eucliden space or a probability distribution)

b. By scanning a 2 dimensional picture

c. As a collection of two dimensional pictures (black-white) of a
three dimensional environment taken by camera from different
angles; each 2D picture regarded as a vector in the pixel space
with a gray scale coordinate for each pixel.

d. As a list of measurements of parameters of a collection of
objects/individuals; for example observations on the patients (in
a hospital)
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3. One wants:

i. In case of sampled geometrical objects :

to derive geometric and topological features without
reconstructing the object entirely or reconstruct a continuos
shape from a sampling.

ii. In case of an a priory unstructured observations:

to discover patterns and unexpected features, detect
missing blocks of data, clusterings

4. One geometrizes the data:

one converts data into topological spaces / spaces and (real
or angle valued )maps .
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How can topology help?

TOPOLOGY provides :

1. Methods to convert a finite metric space into "nice
topological space " = simplicial complex or simplicial
complexs and simplicial real or angle valued maps or
simplicial complex with a filtration.

and uses

2. Homology, Betti numbers, EP characteristic (which
describes all sorts of connectivity) to make mathemati-
cally precise qualitative features of the shape and then
to calculate them.
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SIMPLICIAL COMPLEXES

A solid k− simplex is the convex hull of (k + 1) linearly
independent points .

A geometric simplicial complex K is a "nice subspace of
an Euclidean space " precisely a union of solid simplicies
which intersect each other in faces (subsimplexes) .

An abstract simlicial complex is a pair (V ,Σ) with: V a
finite set, Σ a family of nonempty subsets of V , so that
σ ⊆ τ ∈ Σ⇒ σ ∈ Σ .
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An abstract simplicial complex determines a geometric
simplicial complex and vice versa.

A simplicial complex is determined by its incidence matrix
which can be fed in as input of an algorithm.
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Geometrization of Data

To a finite metric space (X ,d) and ε > 0 one asociates:

1 The abstract CECH COMPLEX, Cε(X ,d) := (X ,Σε)

X = X

Sk := {(x1, x2, · · · xk+1)| iff B(x1; ε) ∩ · · ·B(xk+1; ε) 6= ∅}

2 The abstract VIETORIS- RIPS COMPLEX,
Rε(X ,d) := (X ,Σε).

X = X ,

Sk := {(x1, x2, · · · xk+1)| iff d(xi , xj ) < ε}.
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If ε < ε′ Cε(X ,d) ⊆ Cε′(X ,d) , Rε(X ,d) ⊆ Rε′(X ,d).

The topology of Cε(X ,d) can be very different from
Rε(X ,d), however one has:

Rε(X ,d) ⊆ Cε(X ,d) ⊆ R2ε(X ,d) ⊆ C2ε(X ,d)

A map f : X → R provides the simplicial maps
f : Cε(X ,d)→ R and f : Rε(X ,d)→ R

If ε < π a map f : X → R provides the simplicial maps
f : Cε(X ,d)→ S1.
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If the data is a sample of a compact manifold embedded in the
Euclidean space then:

Theorem
There exists α > 0 so that for any ε− dense sample (X ,d),
ε < α, the Cech complex Cε(X ,d) is homotopy equivalent to the
manifold.
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A fixed set of points can be completed to a Cech complex Cε 
or to a Rips complex Rε based on a proximity parameter ε. 
This Cech complex has the homotopy type of the ε/2 cover 
(S1 ∨ S1 ∨ S1), while the Rips complex has a different 
homotopy type (S1 ∨ S2).
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The topology of the ε complexes differ, for different ε’s .

It is therefore desirable to consider all these complexes.

 

 

 

A sequence of Rips complexes for a point cloud data set 
representing an annulus. Upon increasing ε, holes appear 
and disappear. Which holes are real and which are noise? 
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One obtains:

1 A simplicial complex,

2 A simplicial complex and a simplicial map f : X → R whose
sub levels f−1(−∞, t ] change the homology for finitely
many real values t0 < t1, t2, · · · tN ,

3 A simplicial complex and a simplicial map f : X → R or
f : X → S1 whose levels f−1(t) change the homology for
finitely many (real or angle values) t0 < t2 < · · · tN ∈ R.

4 A simplicial complex X with a filtration
X0 ⊂ X1 ⊂ · · ·XN−1 ⊂ XN = X ; it can be interpreted as
item 2 via the telescope construction.
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Inspired from Morse theory/ Morse–Novikov theory:

to f : X → R based on changes in homology of sub levels
f−1(−∞,a] one associates a collection of sub level bar
codes = intervals [a,b], [a,∞)

to f : X → R or to f : X → S1 based on changes in the
homology of the levels f−1(t) one associates a collection
for types of bar codes = intervals [a,b], (a,b), [a,b), (a,b]
and Jordan cells {(λ, k) | λ ∈ C \ 0, k ∈ Z≥1}
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Topological persistence

For: f : X → R,
X compact ANR,
f a continuous tame map,
a < b, and Xa := f−1(a); X[a,b] := f−1([a,b])

consider

Hr (Xa)
ia //Hr (X[a.b]) Hr (Xb)

iboo

The collection of these linear relations is reffered to as

(extended) persistent homology.
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Birth, Death, Observability

One says that:

x ∈ Hr (Xa) will be dead at b, b > a, if ia(x) = 0

y ∈ Hr (Xb) was born after a, a < b, if ib(y) = 0

x ∈ Hr (Xa) is right-observable at b, b ≥ a if there exists
y ∈ Hr (Xb) so that if ia(x) = ib(y)

y ∈ Hr (Xb) is left-observable at a, a ≤ b if there exists
x ∈ Hr (Xa) so that if ib(y) = ib(y)
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BarCodes and Jordan cells

These concepts lead for any r to four types of intervals called
bar codes.

r− closed bar code [a,b],

r− open bar code (a,b),

r− closed-open [a,b),

r− open-closed (a,b].

The numbers a,b are critical values of f , i.e. values t where the
homology of the fibers Xt = f−1(t) changes.

D.Burghelea Data Analysis & Computational Morse-Novikov theory



In case of f : X → S1 to an isomorphism (the regular part of the
linear relation

Hr (Xt )
it //Hr (X[t ,t+2π]) Hr (Xt+2π)

it+2πoo

leads for any r to

r−Jordan cells {(λ, k) | λ ∈ C \ 0, k ∈ Z≥1}
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Existence of a closed / open, r−bar code with ends a and b
means: for t between a and b there exists x ∈ Hr (Xt ) which is:

observable at b but not at b′, b′ > b and at a but not at a′′,
a′′ < a,
dead at b but not at b′, t < b′ < b and born after a but not
after a′′, a < a′′ < t ,
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Existence of closed-open / open-closed r−bar code with ends
a and b means that for t between a and b there exists
x ∈ Hr (Xt ) which is:

observable at a but not at a′′, a′′ < a, and dead at b but not
at b′, t < b′ < b,

observable at b but not at b′, b′ > b and born after a but
not after a′, a < a′ < t .

The multiplicity of such bar code is the number of linearly
independent elements x which satisfy the properties above.
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One denotes by Bc
r (f ), Bo

r (f ), Bc,o
r (f ) and Bo,c

r (f ) the set of
closed, open, closed-open, and open-closed r−bar codes
of f .

One collects the sets Bc
r (f ) and Bo

r−1(f ) as the finite
configuration of points Cr (f ) in C.

One collects the sets Bc,o
r (f ) and Bo,c

r (f ) as the finite
configuration of points cr (f ) in C \∆}
∆ := {z ∈ C | <z = =z}
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The bar code with ends a, b, a≤b and closed at a is represented  

as a point  a+ ib while the bar code with ends a, b, a < b open at  

a is represented as a point b + ia.   
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Descripion of the configurationn Cr(f )

Consider the function H f : R2 → Z≥0 defined by

H f (a,b) := dim img

{
Hr (f−1(−∞,a])→ Hr (X ))∩
img(Hr(f−1([b,∞))→ Hr(X)

For any square B = [a1,a2]× [b1,b2], a1 < a2,b1 < b2, define

I(B) = H(a1,b2) + H(a2,b1)− H(a1,b1)− H(a2,b2)

and for any z = a + ib the integer valued function

µf (a,b) = lim
(a,b)∈intB

I(B) .

Theorem

Cr (f ) = µf .
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Replacing the function H f above by the function

hf (a,b) :=

{
dim img(Hr (f−1(−∞,a])→ Hr (f−1(−∞,b]) if a < b

dim img(Hr (f−1[a,∞)])→ Hr (f−1[b,∞)) if a > b

one derives for f tame, cr (f ).
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Alternative to Morse (Morse-Novikov) theory

Relates the bar codes (bar codes and Jordan cells ) of f to the
topology of X ( X , ξf ∈ H1(X ; Z)).
For f : X → R a tame map one has.

Theorem
If f : X → R is tame map then ]Bc

r (f ) + ]Bo
r−1(f ) is a homotopy

invariant of X , more precisely is equal to the Betti number βr (X )
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Theorem (Stability)

The assignment C(X , S1) 3 f  Cr (f ) ∈ Sn(C), n = βr (X ), is
continuous.

Theorem (Poincaré duality)

If Mn is a closed κ-orientablea topological manifold with
f : M → R a tame map then Cr (f )(z) = Cn−r (−f )(iz)

aIf κ has characteristic 2 any manifold is κ-orientable if not the manifold
should be orientable.

Similar but more subtle results hold for angle valued maps
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EXAMPLE

φ

2πθ4θ2θ10

circle 1

circle 3

circle 2

1

2

3

Y0 Y1Y

θ6θ5θ3

map φ r-invariants

circle 1: 3 times around circle 1
circle 2: 1 time around 2 and 3 times around 3
circle 3: the identity

dimension bar codes Jordan cells
0 (1, 1)

(θ6, θ1 + 2π] (3, 1)
1 [θ2, θ3] (1, 2)

(θ4, θ5)

Figure 2: Example of r-invariants for a circle valued map

4 Representation theory and r-invariants
The invariants for the circle valued map are derived from the representation theory of quivers. The quivers
are directed graphs. The representation theory of simple quivers such as paths with directed edges was
described by Gabriel [8] and is at the heart of the derivation of the invariants for zigzag and then level
persistence in [4]. For circle valued maps, one needs representation theory for circle graphs with directed
edges. This theory appears in the work of Nazarova [14], and Donovan and Ruth-Freislich [10]. The reader
can find a refined treatment in Kac [15].
Let G2m be a directed graph with 2m vertices, x1, x1, · · · x2m. Its underlying undirected graph is a

simple cycle. The directed edges in G2m are of two types: forward ai : x2i−1 → x2i, 1 ≤ i ≤ m, and
backward bi : x2i+1 → x2i, 1 ≤ i ≤ m− 1, bm : x1 → x2m.

x2

b1
a2

b2

x3

x2m−1

x2m−2

x4

a1

bm

am

x2m

x1

We think of this graph as being residing on the unit circle cen-
tered at the origin o in the plane.
A representation ρ on G2m is an assignment of a vector space

Vx to each vertex x and a linear map Ve : Vx → Vy for each oriented
edge e = {x, y}. Two representations ρ and ρ′ are isomorphic if for
each vertex x there exists an isomorphism from the vector space Vx

of ρ to the vector space V ′
x of ρ′, and these isomorphisms intertwine

the linear maps Vx → Vy and V ′
x → V ′

y . A non-trivial representa-
tion assigns at least one vector space which is not zero-dimensional.
A representation is indecomposable if it is not isomorphic to the
sum of two nontrivial representations. It is not hard to observe that
each representation has a decomposition as a sum of indecompos-

able representations unique up to isomorphisms.

6

map φ r -invariants

circle 1: 1 time around circle 1 -3 times around 2, - 2 times around 3
circle 2: 1 time around circle 1, 4 times around 2, 1 time around 3
circle 3: 2 time around 1, 2 times around 2, 2 times around 3

dimension bar codes Jordan cells
0 (θ2, θ3) (1, 1)

(θ6, θ1 + 2π] (3, 2)
1 [θ2, θ3]

(θ4, θ5)

Figure: Example of r -invariants for a circle valued map

Note : - If one add a cord from the θ2 =level to θ3− level one introduces a 0−open bar
code (θ2, θ3).
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